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OPTICAL GUIDING IN THE SEPARABLE BEAM LIMIT

T. M. Antonsen, Jr. and B. Levush
Laboratory for Plasma and Fusion Energy Studies

University of Maryland

ABSTRACT

The nonlinear theory of optical guiding in an FEL Amplifier is

developed for the case in which the spatial dependence of the current

source term in the wave equation can be separated into the product of a

function of radius and a function of axial distance. Such a separation

can be motivated if either the betatron wavelength is shorter than other

lengths of interest (synchrotron wavelength, vacuum Rayleigh length) or

if the radiation waist exceeds the beam radius. In this limit with the

choice of a Gaussian profile for the electron beam density the wave

equation can be solved exactly and the radiation field felt by the

particles can be expressed as a one-dimensional convolution of the

current source.

With the given expression for the radiation field, the equations of

motion can be solved in the trapped particle regime. Requiring

consistency between the particle motion and the fields yields expressions

describing nonlinear guided states. The adiabatic evolution of these

guided states in the presence of a tapered wiggler is determined by

conservation of the electrons' action and total (field + electron beam)

energy. Using these relations the growth of the radiation waist as the

beam is decelerated can be calculated.

I. INTRODUCTION

Optical guiding in free electron lasers can become a complicated

numerical problem in the nonlinear regime due to the three dimensional

structure of the wave fields.1 - 8  Analytic treatments for the linear

regime of exponential gain have been developed.2 - 5  For nonlinear

simulations the representation of the field can be accomplished either by

finite difference methods
3'6 or expansions in a set of basis functions.

7

Invariably qiestions are raised concerning the accuracy of these

representations. The purpose of this paper is to show that with a few

simple heuristic approximations to the current source term in the wave
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equation the wave equation can be solved exactly. The result is that the

particle motion can be treated as in a one dimensional model and many

analytic results describing the effects of diffraction can be obtained.

Furthermore, this model, whose solution can be obtained analytically, can

serve as a test bed for the other methods. The model we present is

similar to one suggested by Moore in the strong diffraction limit.
4

We begin with a consideration of the wave equation for the signal

vector potential As which is appropriate for amplifiers,
S( ei(z/c-t)

A ey(As e + c.c)

V 2A (X,,z) + 21 - s =47
I s c = - j( z,

where 6j(x,1z) gives the complex amplitude of the component of the beam

current density oscillating in phase with the signal wave. The current

density will be localized in the transverse dimension to an area the size

of the electron beam. Furthermore, we can expect if all the electrons

are interacting strongly with the signal field the z dependence of 6j at

different radial positions xI will be strongly correlated. Accordingly,
we will make the approximation that the axial and transverse dependence

of 6j can be separated,
r.".v 1 2

6 =-y--- exp(--sz) (2)
.rbv r

b z b

where qA

V -

y mc Y r

is the jitter velocity induced by the wiggler field, vz and I are the

speed and current of the electron beam, and we have taken the electron

beam to have a Gaussian profile in radius characterized by a width rb -
I.-

Here we have assumed a planar wiggler. In Eq. (2) the function s(z)

gives the axial dependence of the current density and will be determined

by the dynamics of the interaction of the beam particles with the

ponderomotive wave. By analogy with the one dimensional problem we write

s(z) - <e-i*(z)> (3)

where *(z) represents the phase of a particle in the beat wave potential,

and the angular average is over initial particle phases.

15 616'6 m



3

This separation is probably not justifiable rigorously except when

the radiation waist is much larger the electron beam radius and details

of the radial dependence of the current source are washed out. This is

essentially the argument advanced by Moore.
4

The particles in our model evolve according to the standard one-

dimensional pendulum equation,
8

d C__ 1qAsi qAs i
d (O y + Y = s- " [- e "* + L e '] (4a)

z mc mc

d 6dz = - vy -R zR) (4b),
dz R "z' R

where y R(z) is the so called resonant value of y that is required to keep

particles in phase with beat wave in the presence of tapered wiggler

parameters, and 6y is the deviation of a particle's actual y from the

resonant value. The quantity A is the effective field that a beam
s

particle feels and represents some radial average of the actual field

A (r,z). In our separable beam approximation there is no "first
5

principles" prescription for making this average. However, it can be

verified afterward that if one makes the choice

As(z) f 2irrdr exp(-r-2As(rz) (5)
0 r b  r b

b b
then a conservation of energy relation exists for the system.

Accordingly, we pick Eq. (5) to define A (z).
s

The system of equations (4) can be put into the dimensionless form

a*= p , (6a)a. 1 -*p
=- -(ae'* +ae ) a-c (6b)3 9 2

where the normalizations of 6*, and a are given in Ref. 9 with L replaced

by the Rayleigh length LR  re /can

a 2 3/2 az (7)
c(yR _ 1)

measures the deceleration due to tapering. The wave field satisfies the

Schrodinger like equation,

v2a + 2i I exp(- 2 )s() (8)I 1 a=
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where 4 wL v (0) 2

= 2 1 3/2 1 cv (0) (9)
(Y 0)-1) z

3 4

measures the current and IA = mc3 /q = 1.7 x 104 Amps is related to the

Alfv~n current, and p = r/r0 is the dimensionless radius. The only other

parameters entering the system are the dimensionless beam current I, and

the distribution of injected momenta f(p,E=O).

From this system of equations we may derive the following energy

conservation law

[<p> + f 2" pdpIa . (10)
0

II. SOLUTION OF THE WAVE EQUATION

We now turn to the wave equation (8). Because the radial dependence

of the source is prescribed to be Gaussian we can solve for the wave

field in terms of a Green's function G(p,E - E') which satisfies

VG exp(- p 2 )

VjG + 21 a--r 6 (E - E)

The resulting expression for the wave field is then expressed as a

convolution,

a(p, ) = I f dF - G(pE - E )S(E') + ah(PE (12)
0

where ah(P,E) represents the homogeneous vacuum solution corresponding to

the initial (injected) wave field. Equation (11) is easily solved to

yield,

1 exp(- p2/(I + 21(Q - F"))) (13)G(p, - -S) -2 I + 21 (E - ')) (13

and the radial average in Eq. (5) can be performed to obtain a(E)

I j S(E') + a()
a(Q) - 47r10 di I + i(E - h') (14)

Thus, we see that the effective field felt by the particles can be

written as a one-dimensional convolution of the current source.

The kernal, (I + i(- F;))-, has an obvious physical interpreta-

tion. For small values of (E - E') the wave field is just an integral of

source. This is the result that would be obtained if we had dropped the

transverse derivatives In the wave equation and represents the fact that

nearby contributions of the source to the field are the same as if there
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were no diffraction. For large values of - F (recall distance is

normalized to the Rayleigh length) the Kernal decays weakly indicating

the fact that distant contributions of the source to field are reduced by

diffraction. We note that this decay is very weak and that replacing the

transverse derivatives in Eq. (7) by a constant loss rate which yield an

exponential decay of the kernal greatly overestimates the decay.

It is interesting to examine the amplitude of the field that is

predicted when the source has an exponential dependence on axial

position, S(E) -S 0eiV
.  Such a dependence certainly occurs in linear

theory. We shall see also that this dependence occurs for steady

nonlinear states as well. It is found that as E + =

iv E

with 
a(E) = a0e

a0 = IS0 E(v) , (15)

and ® d-iv x
SE(v) dxe . (16a)

4 1i + ix
0

The complex quantity E(v) is related to the exponential integral

1 VE
E(v) = - (eV , (16b)

with d-t

E (v)1t
V

Using Eq. (6b) we can calculate the rate at which energy is

extracted from the particles to maintain this field,
A S~.* -

-- I<p --- [as - a S]

12 2 i v,= - IS02 ei(v v)CE(v) - (E(v))*]

Thus, the imaginary part of E(v) gives the rate at which energy is

extracted from the particles. For v real and positive E(v) is also real

and the field is maintained in steady state without energy being supplied

by the particles. If v is real and negative we can manipulate the

contour in Eq. (16) to show

E(v P f dyeI V y  i -IV
4E w 0 1-y 4e

where P indicates the principal part of the integral. The particles lose

eno-rij .c ording to

- I s0 12elIV I
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This energy is radiated away from the beam and represents a situation in

which optical guiding is not present.

The preceding discussion shows that the key requirement for optical

guiding in our model is that v > 0. 1 ' 8 Here our definition of an

optically guided state is one that can be maintained without the

continuous transfer of energy from the particles to the fields.

Physically, the condition v > 0 is simply the requirement that the axial

phase speed of the perturbed current source be less than the speed of

light. In this case the fields outside the electron beam are evanescent

and field energy is confined to the vicinity of the electron beam.

Equation (17) may also be used to calculate the field energy stored

in an optically guided state with v > 0. We imagine such a state is

created adiabatically and let V = v + iv with vi < 0 and IVr >> Ivil.

We find by using Eqs. (9) and (17)
012 _ _Is1 2v ie- i

fJ 2rPdp a = - S v E(v r )
0 1Vr r

Integrating from to E and letting v approach zero we have

2 1 r 2f 0 Ido I aa2 . (18)

Thus, we can now express the field energy in a guided state in terms of

the amplitude of the effective field aO .

Finally, we define an expression for the beam to radiation filling

factor, F.

F = 2irpdp a exp(-P 22I 2lrpdpla 12 (19a)

0 7r

or for steady states,

I2 F = 2E 2(v)/(aE/3v) .(19b)

Using Shwartzs inequality one can show from Eq. (19a) F < (2n) - . The

limit F - (2n) -  is achieved in steady state for large v which follows

from the asymptotic expansion of L q. (16). This conforms with our inter-

pretation of the kernal. For large V contributions to the source from

nearby positions dominate. As a result, diffraction is not important,

and the beam and radiation are perfectly matched. On the other hand, for-1 2
small v we obtain F - (27r)- Ivn v. In this case, due to diffraction the

electron beam occupies a much smaller area than the radiation field.

Note, however, that F decreases slowly with v. For v - .01 we find
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27rF = 0.27. This points out that diffraction is a weak effect.

III. LINEAR THEORY

In this section we will analyze the linear regime described by our

separable beam model. To aid in this we augment the particle equations

with the corresponding Vlasov equation

af p f i(ae e- ) I=0 (20)T a e i5 T a-ei ap

where f(p,*, ) is the distribution function. In equilibrium, f = fo(p).

Linearizing Eq. (20), assuming exponential dependences of the first order

quantities on E, and using Eq. (15) to relate the field amplitude to the

perturbed distribution function yields the dispersion relation for v,

1 IE(v) f dp 0f
21)2 (v+p) ap (21)

Here, fo(p) is normalized to unity. For a cold beam (f = 6(p-po)) we
0 0 2can perform the integral in Eq. (21) to obtain 1 = [IE(v)]/[2(v + po 0.

For large beam currents I >> I we anticipate v will be large in which

case we can use the large argument limit of E(v) to obtain
2 Av(v+p0 ) = -I/8r, which is identical to the corresponding one-

dimensional dispersion relation. Thus, if I is large the effects of

diffraction are negligible mainly because fields exponentiate in distance

shorter than the Rayleigh length. For a perfectly matched beam (po = 0)

the spatial growth rate is found to have the characteristic third root
1/3

dependence on current vi = (-/3 2)(I/8,f) 1 / . If I is small, and the beam

energy is perfectly matched we expand E(v) for small to v to obtain
2 _ -I
V = (-I/8r)tnv , which yields

1/2 [ 1/2

In this case the growth rate has a slightly weaker dependence on current
11/2 ^1/3)

(between I and1I/ ) owing to diffraction.

A detailed analysis of the dispersion relation, Eq. (21) including

the effects of beam energy mismatch and energy spread will be presented

in a future publication.
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IV. NONLINEAR GUIDED STATES

We now consider cases where the field amplitude is large enough to

trap particles nonlinearly in the beat wave potential. Further, we

assume that particles execute many synchrotron oscillations before the

parameters of the beat wave change. To treat this case analytically we

let the field be expressed in terms of a slowly varying amplitude and

rapidly varying phase a(E) = a0exp(i fv(E')d') where v(E) is antici-

pated to be real and positive, and varies slowly with E in response to

changes in the wiggler parameters. In the particle equations we define a

new phase + = + f~v(E')d ' which results in the pair of equations
Aa

p- -- aoCOs (22)

where we have taken a0 to be real and we have neglected the deceleration

a to lowest order. Equations (22) are derivable from the Hamiltonian H
2A

H = p + pv + aocoS . (23)
20

Thus, in the trapped particle regime the distribution function depends

only on H, f = f(H). We can now evaluate the source term in Eq. (14) and

obtain the expression for the value of the wave amplitude aO . In doing

this we assume that v() and all other slowly varying quantities are

constant on a length scale in E of order unity. (In fact, for small v,

because of the slow decay of kernal we must make the more stringent
-1

assumption that these quantities are constant on a scale of order v .)

We then perform the convolution integral in Eq. (14) as if the source had

a simple exp(ivE) dependence. Converting the p integration in Eq. (24)

to an H integration, we obtain

a0 = IE(v) f ddH f(H)cos 1/2 (24)

[2( H 2 - a Cos

For positive values of a0 it can be seen from the Hamiltonian that deeply

trapped particles will have cos < 0. Thus, if optically guided states

*exist, the average

<cost> = f didH f(H)cos*
2 0cos 1/2'

Tr[ 2( H - v - a0oOs*)]

must be negative. Examining E(v) given by Eq. (16a) or (16b) it is seen

,d* . I I
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that for real positive V E(v) is negative and thus Eq. (24) is consistent

for positive a0 and steady guided states exist. The existence of these

guided states has nothing to do with the radial profile of the beam,

rather it is a consequence of the saturated states predicted by the one-

dimensional model. The crucial requirement is that in a saturated state

the phase speed of the current perturbation is below the speed of light

so that energy can not be radiated laterally from the beam.

Equation (24) indicates that even for very weak beams I << 1 guided

states exist. This is due to the logarithmic divergence of E(v) for

small v. However, the filling factor for these states will be very small

so there utility may be limited.

The slow evolution of the guided states described by Eq. (24) can be

determined by returning to the governing equations, and restoring the

deceleration a. The result is that f is a function of H through the

conserved particle action J = f dp. The parameter v is then determined

from the energy conservation relation

1 2 3E/v _

l<p> + - a 0  = - I f d'( )
20 E2 (v)

where the average of <p> is found to be simply -v. Thus, using Eq. (24)

we can write the energy balance equation,

I aE 2
-v f d a

Recalling the definition of E we see that DE/v is positive and decreases

with v. Thus, assuming the dependence of <cos> on v to be weak, we see

that for acceleration (a > 0) v(E) increases with & corresponding to

improved guiding (i.e., a larger filling factor). For deceleration,

(a < 0) v() decreases with E corresponding to a decrease in the filling

factor. These results must be regarded as somewhat qualitative because

of the assumption of adiabatic change in the wiggler parameters. A more

quantitative evaluation awaits the numerical simulation of the governing

equations.

V. CONCLUSIONS

In this paper we have presented a model system of equations (the

separable beam model) which is capable of describing a wide variety of

phenomena assoc[ated with optical guiding ii free electron lasers. The
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model's virtues are that it allows for an exact treatment of the wave

fields and collapses the description of the FEL interaction back to a

slightly modified version of the much studied one-dimensional model.

Unfortunately, the key step in obtaining this model is not derivable

from first principles. That is the separation of variables in the

current source term is not rigorously derived. We argue however, that

the details of the radial distribution of current are not important for

beams with small or moderate filling factors. These are beams with

insufficient current to produce exponentiation of fields in one Rayleigh

length. In some respect optical guiding in these beams is of most

interest since optical guiding in strong beams is more assured.

Finally, we suggest that due to the exact solvability of the

radiation field in the separable beam model, that it provides a test by

'I. which more sophisticated treatments can be judged.
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